A
REFERENCES CITED:

1. http://www.epa.gov/oppbead1/pestsales/01pestsales/usage2001_2.html.

2. Capel, P. and S. Larson, Effect of scale on the behavior of atrazine in surface waters. Environ. Sci. Tech., 2001. 35(4): p. 648-657.

3. Miller, S., et al., Atrazine and nutrients in precipitation: Results from the Lake Michigan mass balance study. Environ. Sci. Tech., 2000. 34(1): p. 55-61.

4. Müller, S., et al., Atrazine and its primary metabolites in Swiss lakes: Input characteristics and long-term behavior in the water column. Environ. Sci. Tech., 1997. 31: p. 2104-2113.

5. Solomon, K., et al., Ecological risk assessment of atrazine in North American surface waters. Environ. Toxicol. Chem., 1996. 15: p. 31-76.

6. http://www.epa.gov/pesticides/factsheets/atrazine.htm#q1.

7. http://pubs.usgs.gov/bat/fig1.gif.

8. http://www.idph.state.il.us/envhealth/factsheets/alachlor-atrazine.htm.

9. Fenelon, J. and R. Moore, Transport of agrichemicals to ground and surface waters in a small central Indiana watershed. J. Environ. Qual., 1998. 27: p. 884-894.

10. Fischer, J., B. Apedaile, and L. Vanclief, Seasonal loadings of atrazine and metolachlor to a southeastern Ontario river from surface runoff and groundwater discharge. Water Qual. Res. J. Canada, 1995. 30(3): p. 533-553.

11. Frank, R., et al., Survey of farm wells for pesticides, Ontario, Canada. Arch. Environ. Contam. Toxicol., 1987. 16: p. 1-8.

12. Frank, R., L. Logan, and B. Clegg, Pesticide and polychlorinated biphenyl residues in waters at the mouth of the Grand, Saugeen and Thames rivers, Ontario, Canada, 1986-1990. Arch. Environ. Contam. Toxicol., 1991. 21: p. 585-595.

13. Frank, R. and L. Logan, Pesticide and industrial chemical residues at the mouth of the Grand, Saugeen and Thames rivers, Ontario, Canada, 1981-85. Arch. Environ. Contam. Toxicol., 1988. 17: p. 741-754.

14. Frank, R., et al., Investigations of pesticide contaminants in rural wells, 1979-1984, Ontario Canada. Environ. Contam. Toxicol., 1987. 16: p. 9-22.

15. Frank, R. and G. Sirons, Atrazine: Its use in corn production and its loss to stream waters in southern Ontario. Sci. Total Env., 1979. 12: p. 223-239.

16. Insensee, A., R. Nash, and C. Helling, Effect of conventional vs. no-tillage on pesticide leaching to shallow groundwater. J. Environ. Qual., 1990. 19: p. 434-440.

17. Kolpin, D., J. Barbash, and R. Gilliom, Occurence of pesticides in shallow groundwater of the United States: Initial results from the National Water-Quality Assessment Program. Environ. Sci. Technol., 1998. 32: p. 558-566.

18. Kucklick, J. and T. Bidleman, Organic contaminants in Winyah Bay, South Carolina II: Using natural fluorescence to follow atrazine levels and river mixing. Marine Environmental Research, 1994. 37: p. 79-91.

19. Kucklick, J. and T. Bidleman, Organic contaminants in Winyah Bay South Carolina I: Pesticides and polycyclic aromatic hydrocarbons in subsurface and microlayer waters. Marine Environmental Research, 1994. 37: p. 63-78.

20. Oberdorster, E., et al., Common phytochemicals are ecdysteroid agonists and antagonists: A possible evolutionary link between vertebrate and invertebrate steroid hormones. J. Steroid Biochem. Molec Biol., 2001. 77(4-5): p. 229-238.

21. Pennington, P., et al., Analysis of pesticide runoff from mid-Texas estuaries and risk assessment implication for marine phytoplankton. J. Environ. Sci. Health, 2001. B36(1): p. 1-14.

22. Scribner, E., et al., Changes in herbicide concentrations in Midwestern streams in relation to changes in use, 1989-1998. The Science of the Total Environment, 2000. 248: p. 255-263.

23. Thurman, E., et al., A reconnaissance study of herbicides and their metabolites in surface water of the midwestern United States using immunoassay and gas chromatography/mass spectrometry. Environ. Sci. Tech., 1992. 26: p. 2440-2447.

24. Thurman, E. and A. Cromwell, Atmospheric transport, deposition, and fate of triazine herbicides and their metabolites in pristine areas at Isle Royale National Park. Environ. Sci. Tech., 2000. 34: p. 3079-3085.

25. http://carbon.cudenver.edu/~landerso/97ra12203.htm.

26. http://toxics.usgs.gov/pubs/wri99-4018/Volume2/sectionC/2406_Majewski/pdf/2406_Majewski.pdf.

27. Van Dijk, H. and R. Guicherit, Atmospheric dispersion of current-use pesticides: A review of the evidence from monitoring studies. Water, Air, & Soil Pollution, 1999. 115(1-4): p. 21-70.

28. Du Preez, L.H., et al., Population structure characterization of the clawed frog (Xenopus laevis) in corn-growing versus non-corn-growing areas in South Africa. Afr. J. Herp., 2005. 54: p. 61-68.

29. Nations, B. and G. Hallberg, Pesticides in Iowa precipitation. J. Environ. Qual., 1992. 21(3): p. 486-492.

30. Hayes, T., et al., Atrazine-induced hermaphroditism at 0.1 ppb in American leopard frogs (Rana pipiens): Laboratory and field evidence. Environ. Health Perspect., 2002. 111: p. 568-575.

31. Hennion, M., et al. A ten-year survey of ground water: High persistence of some pesticide metabolites. in The Ninth Symposium on Chemistry and Fate of Modern Pesticides. 2004. Vail, CO.

2. Atrazine is a ubiquitous, persistent, and highly mobile contaminant
AA